Saved shape application

- Consider actual shell status (positions and forces) VS recorded shell status and compute delta position and delta current on close loop actuators (dP, dF)
- Compute theoretical delta current considering feed forward matrix and delta position (dFF)
- Consider the distribution of (dFF – dF): use a threshold of 3σ on gauss distribution fit to select actuators
- On actuator selection, use dF data to compute a new synthetic delta command dCs
- Compute the new delta command dC as mix of dP (good actuators) and dCs (bad actuators)
- Null high order modal components until force is lower than threshold
Saved shape application

- Consider actual shell status (positions and forces) VS recorded shell status and compute delta position and delta current on close loop actuators (dP, dF)
- Compute theoretical delta current considering feed forward matrix and delta position (dFF)
 - Consider the distribution of (dFF – dF): use a threshold of 3σ on gauss distribution fit to select actuators
 - On actuator selection, use dF data to compute a new synthetic delta command dCs
- Compute the new delta command dC as mix of dP (good actuators) and dCs (bad actuators)
- Null high order modal components until force is lower than threshold
Shape actuator:

- Consider actual shell status (positions and forces) VS recorded shell status and compute delta position and delta current on close loop actuators (dP, dF)
- Compute theoretical delta current considering feed forward matrix and delta position (dFF)
- Consider the distribution of (dFF – dF): use a threshold of 3σ on gauss distribution fit to select actuators
- On actuator selection, use dF data to compute synthetic delta command dCs
- Compute the new delta command dC as mix of dP (good actuators) and dCs (bad actuators)
- Null high order modal components until force is lower than threshold
Saved shape application

• Consider actual shell status (positions and forces) VS recorded shell status and compute delta position and delta current on close loop actuators (dP, dF)

• Compute theoretical delta current considering feed forward matrix and delta position (dFF)

• Consider the distribution of (dFF – dF): use a threshold of 3σ on gauss distribution fit to select actuators

• On actuator selection, use dF data to compute a new synthetic delta command dCs

• Compute the new delta command dC as mix of dP (good actuators) and dCs (bad actuators)

• Null high order modal components until force is lower than threshold
• Consider the distribution of \((dFF - dF)\): use a threshold of \(3\sigma\) on gauss distribution fit to select actuators.

• On actuator selection, use \(dF\) data to compute a new synthetic delta command \(dCs\).

• Compute the new delta command \(dC\) as mix of \(dP\) (good actuators) and \(dCs\) (bad actuators).

• Null high order modal components until force is lower than threshold.
Saved shape application

- Consider actual shell status (positions and forces) VS recorded shell status and compute delta position and delta current on close loop actuators (dP, dF)
- Compute theoretical delta current considering feed forward matrix and delta position (dFF)
- Consider the distribution of (dFF – dF): use a threshold of 3σ on gauss distribution fit to select actuators
- On actuator selection, use dF data to compute a new synthetic delta command dCs
- Compute the new delta command dC as mix of dP (good actuators) and dCs (bad actuators)
- Null high order modal components until force is lower than threshold
Open issues...

• Is the procedure working with a reference flat with a different number of actuators in close loop?
• How can we modify the procedure for taking in account the elevation of the telescope?
• Can we find a more deterministic way to identify miscalibrated actuators?